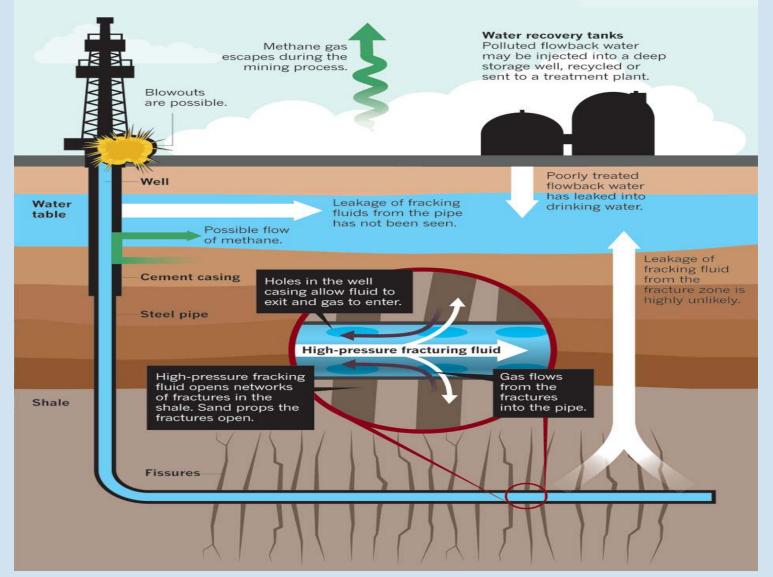
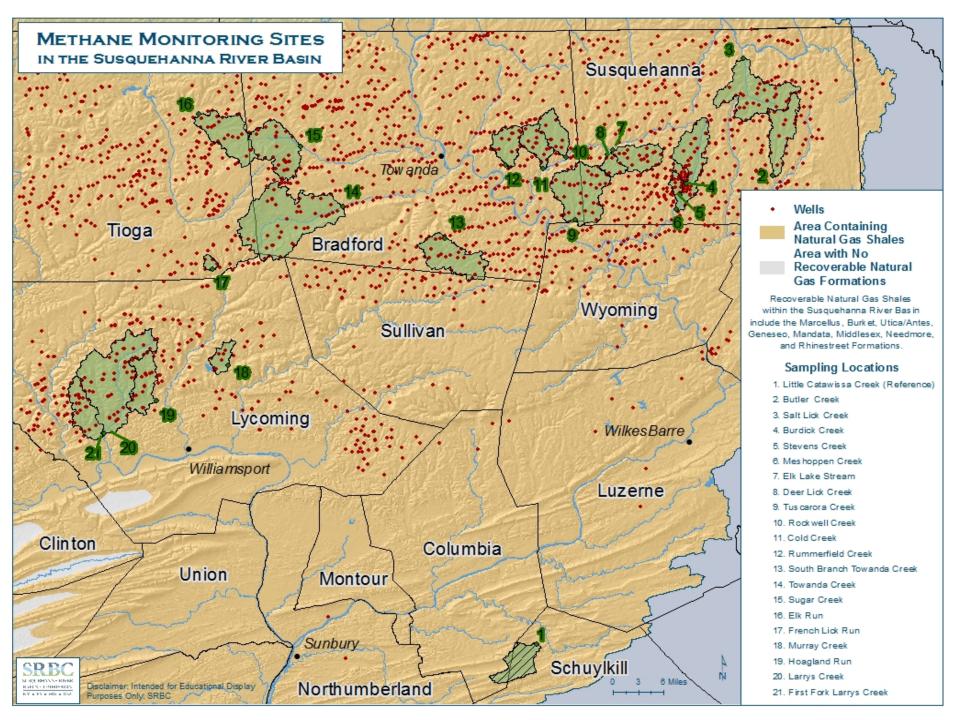
Preliminary Results from Stream Methane Monitoring in the Marcellus Shale Region of the Susquehanna River Basin

Luanne Steffy Aquatic Ecologist, Susquehanna River Basin Commission Shale Network 2017 Workshop May 19, 2017

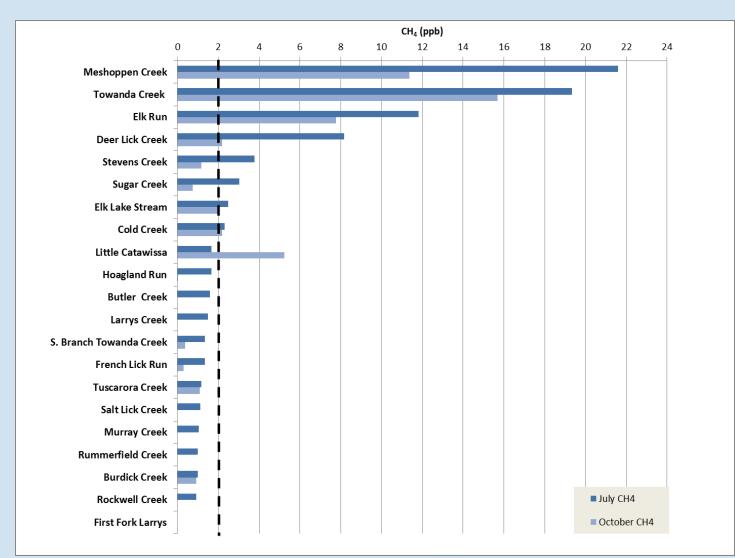

General Overview

- USGS reported on results from monitoring methane concentrations in surface water as potential indicator of Marcellus source methane in groundwater
 - Surface water easier to sample
 - Exploratory/screening type data collection done fairly inexpensively
- Targeted small streams with high gas well density
 - 20 stream sites
 - July and October 2016
- Analyzed for dissolved methane concentration and isotopic fractionation
- Isotopes of CH₄
 - ratio of ${}^{13}C/{}^{12}C$
 - ratio of $^{2}H/^{1}H$
 - looking at these ratios can provide source tracking information

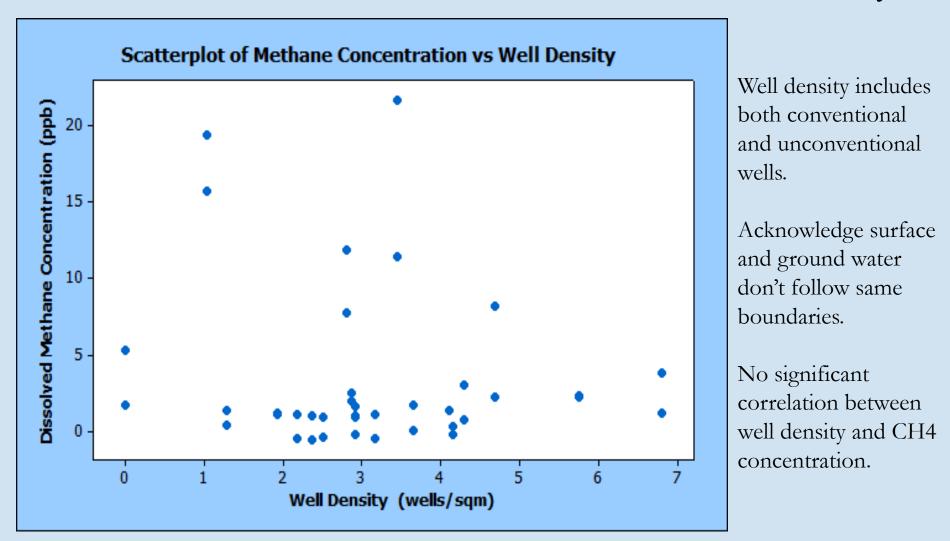


Hydraulic fracturing is used to access oil and gas resources that are locked in non-porous rocks.

Caveats and Disclaimers


- Exploratory Monitoring
- Non-regulatory
- Implementation of USGS research methods
- NOT pointing to any specific well or company
- We recognize we are working with very low concentrations so the results must be interpreted with caution

				Drainage Area	Size class	Well density
Stream	WBD 12 Name	Latitude	Longitude	(sqm)	(sqm)	(wells/sqm)
Stevens Creek	Thomas Creek-Meshoppen Creek	41.69666	-75.89069	4	<10	6.8
Cold Creek	Cold Creek - Wyalusing Creek	41.74771	-76.20762	12	10-20	5.75
Deer Lick Creek	Deer Lick Creek - E. Branch Wyalusing Creek	41.77499	-76.05931	7	<10	4.69
Sugar Creek	South Branch Sugar Creek	41.78982	-76.77577	29	20-40	4.3
First Fork Larrys Creek	First Fork Larrys Creek	41.26730	-77.23529	18	10-20	4.15
French Lick Run	Roaring Branch	41.55994	-76.98014	3	<10	4.1
Hoagland Run	Hoagland Run	41.32709	-77.11620	19	10-20	3.65
Meshoppen Creek	Thomas Creek - Meshoppen Creek	41.68280	-75.88721	31	20-40	3.44
Murray Creek	Wallis Run	41.39128	-76.94614	8	<10	3.17
Burdick Creek	Thomas Creek-Meshoppen Creek	41.71754	-75.87267	3	<10	2.92
Butler Creek	Butler Creek	41.72926	-75.67472	21	20-40	2.92
Elk Lake Stream	Lake Stream	41.78005	-76.04555	16	10-20	2.87
Elk Run	Gaffers Creek - Elk Run	41.84806	-77.01227	28	20-40	2.81
Rockwell Creek	Rockwell Creek - Wyalusing Creek	41.76815	-76.15558	13	10-20	2.5
Rummerfield Creek	Rummerfield Creek - Susquehanna River	41.74542	-76.30876	14	10-20	2.37
Salt Lick Creek	Salt Lick Creek	41.94494	-75.73761	40	20-40	2.17
Tuscarora Creek	Tuscarora Creek	41.65316	-76.13534	39	20-40	1.93
Larrys Creek	Larrys Creek	41.26859	-77.23291	62	40+	1.6
S. Branch Towanda Creek	South Branch Towanda Creek	41.62711	-76.43413	29	20-40	1.29
Towanda Creek	Headwaters Towanda Creek	41.69248	-76.62909	79	40+	1.04
Little Catawissa Creek	Little Catawissa Creek	40.889945	-76.209143	17	10-20	0

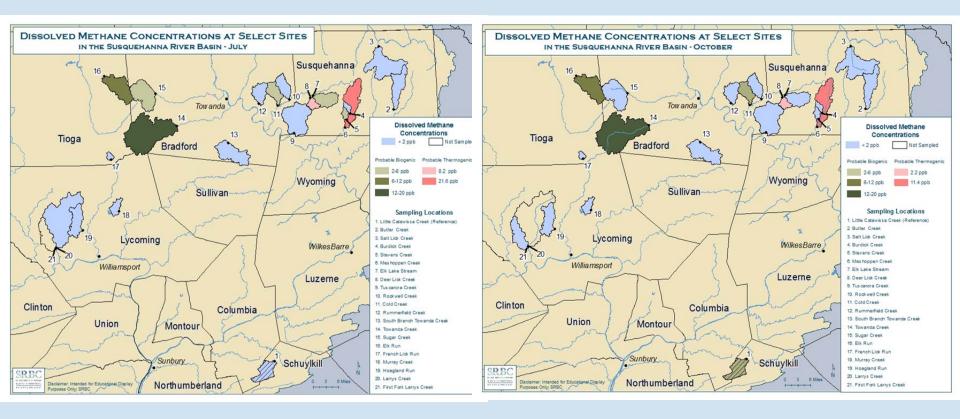


Dissolved Methane Concentrations


Methane Concentration vs. Well Density

Susquehanna River Basin Commission

srbc.net


Interpreting Isotope Data

 δ $^{13}\text{C}_{\text{CH4}}\,$ RELATIVE TO VPDB, IN PER MIL

Schoell 1980

Spatial Distribution

Susquehanna River Basin Commission

srbc.net

What does this all mean?

- Initial results point toward a possible signal of thermogenic methane in two watersheds
- High well density areas
- Very low methane concentrations
- Need to do more intensive sampling, compile more lines of evidence
- Results were promising enough to warrant additional internal SRBC funding

Next Steps

- Focus on Deer Lick and Meshoppen Creeks
 validate thermogenic methane isotopic signatures
- Evaluate seasonal/flow differences
 - sample in 3 different flows
- Document extent and duration
 - sample at intervals upstream and downstream of original sampling point
- Additional lines of evidence
 - methane/ethane ratio

Acknowledgements

- SRBC internal funding
- Dennis Risser, USGS
- University of Arkansas and UC Davis labs
- Kim Dagen, Ryan Fielden, Blake Maurer, Matt Elsasser

Luanne Steffy lsteffy@srbc.net

Questions?